Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Brain Res Bull ; 209: 110918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432497

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a leading cause of high mortality and disability worldwide. Overactivation of astrocytes and overexpression of inflammatory responses in the injured brain are characteristic pathological features of TBI. Rosiglitazone (ROS) is a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist known for its anti-inflammatory activity. However, the relationship between the inflammatory response involved in ROS treatment and astrocyte A1 polarization remains unclear. OBJECTIVE: This study aimed to investigate whether ROS treatment improves dysfunction and astrocyte A1 polarization induced after TBI and to elucidate the underlying mechanisms of these functions. METHODS: SD rats were randomly divided into sham operation group, TBI group, TBI+ROS group, and TBI+ PPAR-γ antagonist group (GW9662 + TBI). The rat TBI injury model was prepared by the CCI method; brain water content test and wire grip test scores suggested the prognosis; FJB staining showed the changes of ROS on the morphology and number of neurons in the peripheral area of cortical injury; ELISA, immunofluorescence staining, and western blotting analysis revealed the effects of ROS on inflammatory response and astrocyte activation with the degree of A1 polarization after TBI. RESULTS: Brain water content, inflammatory factor expression, and astrocyte activation in the TBI group were higher than those in the sham-operated group (P < 0.05); compared with the TBI group, the expression of the above indexes in the ROS group was significantly lower (P < 0.05). Compared with the TBI group, PPAR-γ content was significantly higher and C3 content was considerably lower in the ROS group (P < 0.05); compared with the TBI group, PPAR-γ content was significantly lower and C3 content was substantially higher in the inhibitor group (P < 0.05). CONCLUSION: ROS can exert neuroprotective effects by inhibiting astrocyte A1 polarization through the PPAR-γ pathway based on the reduction of inflammatory factors and astrocyte activation in the brain after TBI.


Assuntos
Astrócitos , Lesões Encefálicas Traumáticas , Hipoglicemiantes , Doenças Neuroinflamatórias , Rosiglitazona , Animais , Ratos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , PPAR gama/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Rosiglitazona/farmacologia , Rosiglitazona/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino
2.
CNS Neurol Disord Drug Targets ; 23(3): 402-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36797610

RESUMO

BACKGROUND: Postsynaptic density (PSD) is an electron-dense structure that contains various scaffolding and signaling proteins. Shank1 is a master regulator of the synaptic scaffold located at glutamatergic synapses, and has been proposed to be involved in multiple neurological disorders. METHODS: In this study, we investigated the role of shank1 in an in vitro Parkinson's disease (PD) model mimicked by 6-OHDA treatment in neuronal SN4741 cells. The expression of related molecules was detected by western blot and immunostaining. RESULTS: We found that 6-OHDA significantly increased the mRNA and protein levels of shank1 in SN4741 cells, but the subcellular distribution was not altered. Knockdown of shank1 via small interfering RNA (siRNA) protected against 6-OHDA treatment, as evidenced by reduced lactate dehydrogenase (LDH) release and decreased apoptosis. The results of RT-PCR and western blot showed that knockdown of shank1 markedly inhibited the activation of endoplasmic reticulum (ER) stress associated factors after 6-OHDA exposure. In addition, the downregulation of shank1 obviously increased the expression of PRDX3, which was accompanied by the preservation of mitochondrial function. Mechanically, downregulation of PRDX3 via siRNA partially prevented the shank1 knockdowninduced protection against 6-OHDA in SN4741 cells. CONCLUSION: In summary, the present study has provided the first evidence that the knockdown of shank1 protects against 6-OHDA-induced ER stress and mitochondrial dysfunction through activating the PRDX3 pathway.


Assuntos
Doença de Parkinson , Humanos , Oxidopamina/toxicidade , Apoptose , Proteínas , RNA Interferente Pequeno/metabolismo , Peroxirredoxina III
3.
World J Clin Cases ; 11(31): 7583-7592, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38078125

RESUMO

BACKGROUND: Venous thromboembolism (VTE) is a common neurosurgical complication after brain tumor resection, and its prophylaxis has been widely studied. There are no effective drugs in the clinical management of venous thromboembolism, and there is an absence of evidence-based medicine concerning the treatment of severe multiple traumas. AIM: To explore whether ulinastatin (UTI) can prevent VTE after brain tumor resection. METHODS: The present research included patients who underwent brain tumor resection. Patients received UTIs (400,000 IU) or placebos utilizing computer-based random sequencing (in a 1:1 ratio). The primary outcome measures were the incidence of VTE, coagulation function, pulmonary emboli, liver function, renal function, and drug-related adverse effects. RESULTS: A total of 405 patients were evaluated between January 2019 and December 2021, and 361 of these were initially enrolled in the study to form intention-to-treat, which was given UTI (n = 180) or placebo (n = 181) treatment in a random manner. There were no statistically significant differences in baseline clinical data between the two groups. The incidence of VTE in the UTI group was remarkably improved compared with that in the placebo group. UTI can improve coagulation dysfunction, pulmonary emboli, liver function, and renal function. No significant difference was identified between the two groups in the side effects of UTI-induced diarrhea, vomiting, hospital stays, or hospitalization costs. The incidence of allergies was higher in the UTI group than in the placebo group. CONCLUSION: The findings from the present research indicated that UTI can decrease the incidence of VTE and clinical outcomes of patients after brain tumor resection and has fewer adverse reactions.

4.
Brain Res Bull ; 203: 110780, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37820952

RESUMO

Aneurysmal subarachnoid hemorrhage (aSAH) accounts for only 5 % of all stroke cases, but carries a heavy burden of morbidity and mortality. Activity regulated cytoskeleton associated protein (Arc) is an immediate early gene (IEG)-coded postsynaptic protein that is involved in synaptic plasticity. Increasing evidence and our previous studies have shown that Arc might be involved in the pathological mechanism of various neurological diseases, such as traumatic brain injury (TBI). In this study, we investigated the level of Arc in cerebrospinal fluids (CSF) of aSAH patients and its potential role in brain damage following experimental SAH model. We found that the levels of Arc in aSAH patients' CSF positively correlated with Hunt-Hess (H&H) grades. Knockdown of endogenous Arc expression by small interfere RNA (siRNA) significantly increased brain edema and oxidative stress following SAH. The results of immunostaining in brain sections showed that knockdown of Arc enhanced activation of microglia and astrocytes. In congruent, generation of inflammatory cytokines following SAH was increased by Si-Arc transfection. The results of western blot analysis showed that knockdown of Arc inhibited the expression of Sirt1 and Nrf2, which was accompanied by decreased enzymatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). In addition, activation of sirtuin 1 (Sirt1) via agonist SRT2104 markedly decreased the brain damage and neuroinflammation induced by Arc knockdown. In conclusion, knockdown of endogenous Arc could aggravate brain damage and neuroinflammation following experimental SAH, and Arc levels in aSAH patients' CSF might be a potential indicator of brain damage and prognosis.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Ratos , Animais , Humanos , Hemorragia Subaracnóidea/metabolismo , Sirtuína 1/metabolismo , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo
5.
Mol Biol Rep ; 50(9): 7237-7244, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418085

RESUMO

BACKGROUND: Necroptosis, a newly defined regulatable necrosis with membrane disruption, has been demonstrated to participate in trauma brain injury (TBI) related neuronal cell death. Heat shock protein 70 (HSP70) is a stress protein with neuroprotective activity, but the potential protective mechanisms are not fully understood. METHODS AND RESULTS: Here, we investigated the effects of HSP70 regulators in a cellular TBI model induced by traumatic neuronal injury (TNI) and glutamate treatment. We found that necroptosis occurred in cortical neurons after TNI and glutamate treatment. Neuronal trauma markedly upregulated HSP70 protein expression within 24 h. The results of immunostaining and lactate dehydrogenase release assay showed that necroptosis following neuronal trauma was inhibited by HSP70 activator TRC051384 (TRC), but promoted by the HSP70 inhibitor 2-phenylethyenesulfonamide (PES). In congruent, the expression and phosphorylation of receptor interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL) were differently regulated by HSP70. Furthermore, the expression of HSP90α induced by neuronal trauma was further promoted by PES but decreased by TRC. The data obtained from western blot showed that the phosphorylation of RIPK3 and MLKL induced by HSP70 inhibition were reduced by RIPK3 inhibitor GSK-872 and HSP90α inhibitor geldanamycin (GA). Similarly, inhibition of HSP90α with GA could partially prevented the increased necroptosis induced by PES. CONCLUSIONS: Taken together, HSP70 activation exerted protective effects against neuronal trauma via inhibition of necroptosis. Mechanistically, the HSP90α-mediated activation of RIPK3 and MLKL is involved in these effects.


Assuntos
Proteínas de Choque Térmico HSP70 , Proteínas Quinases , Humanos , Proteínas Quinases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Necroptose , Necrose , Neurônios/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
6.
Neural Regen Res ; 18(4): 849-855, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204853

RESUMO

The mitochondrial permeability transition pore is a nonspecific transmembrane channel. Inhibition of mitochondrial permeability transition pore opening has been shown to alleviate mitochondrial swelling, calcium overload, and axonal degeneration. Cyclophilin D is an important component of the mitochondrial permeability transition pore. Whether cyclophilin D participates in mitochondrial impairment and axonal injury after intracerebral hemorrhage is not clear. In this study, we established mouse models of intracerebral hemorrhage in vivo by injection of autologous blood and oxyhemoglobin into the striatum in Thy1-YFP mice, in which pyramidal neurons and axons express yellow fluorescent protein. We also simulated intracerebral hemorrhage in vitro in PC12 cells using oxyhemoglobin. We found that axonal degeneration in the early stage of intracerebral hemorrhage depended on mitochondrial swelling induced by cyclophilin D activation and mitochondrial permeability transition pore opening. We further investigated the mechanism underlying the role of cyclophilin D in mouse models and PC12 cell models of intracerebral hemorrhage. We found that both cyclosporin A inhibition and short hairpin RNA interference of cyclophilin D reduced mitochondrial permeability transition pore opening and mitochondrial injury. In addition, inhibition of cyclophilin D and mitochondrial permeability transition pore opening protected corticospinal tract integrity and alleviated motor dysfunction caused by intracerebral hemorrhage. Our findings suggest that cyclophilin D is used as a key mediator of axonal degeneration after intracerebral hemorrhage; inhibition of cyclophilin D expression can protect mitochondrial structure and function and further alleviate corticospinal tract injury and motor dysfunction after intracerebral hemorrhage. Our findings provide a therapeutic target for preventing axonal degeneration of white matter injury and subsequent functional impairment in central nervous diseases.

7.
J Craniofac Surg ; 34(2): 680-683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36168119

RESUMO

Chronic hydrocephalus after clipping aneurysmal subarachnoid hemorrhage (aSAH) often results in poor outcomes. This study was to establish and validate model to predict chronic hydrocephalus after aSAH by least absolute shrinkage and selection operator logistic regression. The model was constructed from a retrospectively analyzed. Two hundred forty-eight patients of aSAH were analyzed retrospectively in our hospital from January 2019 to December 2021, and the patients were divided into chronic hydrocephalus (CH) group (n=55) and non-CH group (n=193) according to whether occurred CH within 3 months. In summary, 16 candidate risk factors related to chronic hydrocephalus after aSAH were analyzed. Univariate analysis was performed to judging the risk factors for CH. The least absolute shrinkage and selection operator regression was used to filter risk factors. Subsequently, the nomogram was designed by the above variables. And area under the curve and calibration chart were used to detect the discrimination and goodness of fit of the nomogram, respectively. Finally, decision curve analysis was constructed to assess the practicability of the risk of chronic hydrocephalus by calculating the net benefits. Univariate analysis showed that age (60 y or older), aneurysm location, modified Fisher grade, Hunt-Hess grade, and the method for cerebrospinal fluid drainage, intracranial infections, and decompressive craniectomy were significantly related to CH ( P <0.05). Whereas 5 variables [age (60 y or older), posterior aneurysm, modified Fisher grade, Hunt-Hess grade, decompression craniectomy] from 16 candidate factors were filtered by LASSO logistic regression for further research. Area under the curve of this model was 0.892 (95% confidence interval: 0.799-0.981), indicating a good discrimination ability. Meanwhile, the result of calibration indicated a good fitting between the prediction probability and the actual probability. Finally, decision curve analysis showed a good clinical efficacy. In summary, this model could conveniently predict the occurrence of chronic hydrocephalus after aSAH. Meanwhile, it could help physicians to develop personalized treatment and close follow-up for these patients.


Assuntos
Hidrocefalia , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/etiologia , Estudos Retrospectivos , Hidrocefalia/cirurgia , Aneurisma Intracraniano/cirurgia , Fatores de Risco
8.
Front Aging Neurosci ; 14: 901117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978950

RESUMO

Traumatic brain injury (TBI) is a serious disease that threatens life and health of people. It poses a great economic burden on the healthcare system. Thus, seeking effective therapy to cure a patient with TBI is a matter of great urgency. Microglia are macrophages in the central nervous system (CNS) and play an important role in neuroinflammation. When TBI occurs, the human body environment changes dramatically and microglia polarize to one of two different phenotypes: M1 and M2. M1 microglia play a role in promoting the development of inflammation, while M2 microglia play a role in inhibiting inflammation. How to regulate the polarization direction of microglia is of great significance for the treatment of patients with TBI. The polarization of microglia involves many cellular signal transduction pathways, such as the TLR-4/NF-κB, JAK/STAT, HMGB1, MAPK, and PPAR-γ pathways. These provide a theoretical basis for us to seek therapeutic drugs for the patient with TBI. There are several drugs that target these pathways, including fingolimod, minocycline, Tak-242 and erythropoietin (EPO), and CSF-1. In this study, we will review signaling pathways involved in microglial polarization and medications that influence this process.

9.
Front Cell Dev Biol ; 10: 847859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465331

RESUMO

Traumatic brain injury (TBI) is still a major public health problem worldwide, and the research of neuroprotective drugs has encountered great difficulties. Whole body vibration (WBV) is a safe and powerful rehabilitative intervention in various clinical settings, but its effect on neurological diseases is not well documented. In this study, we investigated the effects of WBV pretreatment on brain damage following experimental TBI mimicked by controlled cortical impact (CCI) in mice. C57BL/6 J male mice were expose to WBV at 30 Hz twice per day for 20 days and injured by CCI. WBV had no effect on animal body weight, but significantly reduced the TBI-induced brain edema in the cortex. The results of immunostaining showed that the activation of microglia and astrocytes induced by TBI in brain sections was attenuated by WBV. In consistent, WBV markedly inhibited the expression of pro-inflammatory cytokines, while increased the levels of anti-inflammatory cytokine interleukin 10 (IL-10). In addition, WBV pretreatment alleviated neuronal apoptosis in the cortex and suppressed the cleavage of the apoptotic executive molecule caspase-1. The neurological dysfunction following TBI was determined by open field test and Morris Water Maze (MWM) assay. The results showed that motor activity, learning and memory ability were preserved by WBV compared to TBI-injured mice. In summary, our present data identified WBV as a clinically potent strategy with which to attenuate TBI-related brain damage through regulating neuroinflammation.

10.
Cell Death Discov ; 8(1): 95, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246523

RESUMO

Dysfunction of ionotropic glutamate receptors (iGluRs) is a key molecular mechanism of excitotoxic neuronal injury following traumatic brain injury (TBI). Edonerpic maleate is a low molecular-weight compound that was screened as a candidate neuroprotective agent. In this study, we investigated its effects on TBI and GluRs signaling. Traumatic neuronal injury (TNI) induced by scratch followed by glutamate treatment was performed to mimic TBI in vitro. Edonerpic maleate at 1 and 10 µM exerted protective activity when it was added within 2 h following injury. The protective activities were also confirmed by the reduction of lipid peroxidation and oxidative stress. In addition, edonerpic maleate inhibited the expression of surface NR2B, total GluR1, and surface GluR1, and mitigated the intracellular Ca2+ responses following injury in vitro. Western blot analysis showed that edonerpic maleate reduced the cleavage of collapsing response mediator protein 2 (CRMP2), but increased the expression of postsynaptic protein Arc. By using gene overexpression and silencing technologies, CRMP2 was overexpressed and Arc was knockdown in cortical neurons. The results showed that the effect of edonerpic maleate on NMDA receptor expression was mediated by CRMP2, whereas the edonerpic maleate-induced AMPA receptor regulation was dependent on Arc activation. In in vivo TBI model, 30 mg/kg edonerpic maleate alleviated the TBI-induced brain edema, neuronal loss, and microglial activation, with no effect on locomotor function at 24 h. However, edonerpic maleate improves long-term neurological function after TBI. Furthermore, edonerpic maleate inhibited CRMP2 cleavage but increased Arc activation in vivo. In summary, our results identify edonerpic maleate as a clinically potent small compound with which to attenuate TBI-related brain damage through regulating GluRs signaling.

11.
Transl Stroke Res ; 13(5): 845-857, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35192161

RESUMO

Neuronal injury following subarachnoid hemorrhage (SAH) has been shown to be associated with mitochondrial dysfunction and oxidative stress. ßIIPKC, a subtype of protein kinase C (PKC), accumulates on the mitochondrial outer membrane and phosphorylates mitofusin 1 (Mfn1) at serine 86. Here, we investigated the role of Mfn1-ßIIPKC interaction in brain damage and neurological function in both in vivo and in vitro experimental SAH models. The expression of ßIIPKC protein and the interaction of Mfn1-ßIIPKC were found to be increased after OxyHb treatment in primary cultured cortical neurons and were also observed in the brain following SAH in rats. Treatment with the ßIIPKC inhibitor ßIIV5-3 or SAMßA, a peptide that selectively antagonizes Mfn1-ßIIPKC association, significantly attenuated the OxyHb-induced neuronal injury and apoptosis. These protective effects were accompanied by inhibited mitochondrial dysfunction and preserved mitochondrial biogenesis. The results of western blot showed that ßIIV5-3 or SAMßA markedly increased the expression of Sirt3 and enhanced the activities of its downstream mitochondrial antioxidant enzymes in OxyHb-treated neurons. Knockdown of Sirt3 via specific targeted small interfering RNA (siRNA) partially prevented the ßIIV5-3- or SAMßA-induced protection and antioxidative effects. In addition, treatment with ßIIV5-3 or SAMßA in vivo was found to obviously reduce brain edema, alleviate neuroinflammation, and preserve neurological function after experimental SAH in rats. In congruent with in vitro data, the protection induced by ßIIV5-3 or SAMßA was reduced by Sirt3 knockdown in vivo. In summary, our present results showed that blocking Mfn1-ßIIPKC interaction protects against brain damage and mitochondrial dysfunction via Sirt3 following experimental SAH.


Assuntos
Lesões Encefálicas , Proteínas de Membrana , Proteínas Mitocondriais , Proteína Quinase C beta , Sirtuína 3 , Hemorragia Subaracnóidea , Animais , Apoptose , Lesões Encefálicas/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Proteína Quinase C beta/metabolismo , Ratos , Sirtuína 3/genética , Sirtuínas , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo
12.
Int J Neurosci ; 132(2): 165-170, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32883145

RESUMO

PURPOSE: Striatal asymmetry is a common feature in Parkinson's disease (PD), which changes with the progression of the disease. However, the correlation between the striatal asymmetry and severity of PD remains unclear. The present study aimed to investigate the characteristics of asymmetry in PD, and analyze the correlation between the striatal asymmetry index (SAI) and disease severity. MATERIALS AND METHODS: This retrospective study enrolled 63 patients with idiopathic PD. The severity of PD was classified according to the Hoehn & Yahr (H&Y) staging system. The SAI in the subregions of the striatum was measured using 11C-N-2-carbomethoxy-3-(4-fluorophenyl)-tropane (11C-CFT) positron emission tomography (PET). RESULTS: There was a significant difference in the SAI of the posterior putamen among the three groups (H&Y stage I, H&Y stage II, and H&Y stage III-IV; p = 0.001). However, there was no difference in the SAI of the anterior putamen (p = 0.340) or SAI of the caudate nucleus (p = 0.342) among the three groups. The SAI of the posterior putamen in patients with PD was significantly higher than that in patients with multiple system atrophy or progressive supranuclear palsy (p = 0.008). CONCLUSION: The SAI of the posterior putamen is associated with the severity of PD, and may be correlated to the loss of dopamine cells in the pars compacta of the ventrolateral substantia nigra projecting to the posterior putamen. The SAI may be a potential indicator for evaluating the severity of PD, and distinguishing PD from other degenerative diseases.


Assuntos
Doença de Parkinson , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Humanos , Doença de Parkinson/diagnóstico por imagem , Putamen/metabolismo , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
13.
Oxid Med Cell Longev ; 2021: 4280951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790287

RESUMO

Decompressive craniectomy is an effective strategy to reduce intracranial hypertension after traumatic brain injury (TBI), but it is related to many postoperative complications, such as delayed intracranial hematoma and diffuse brain swelling. Our previous studies have demonstrated that controlled decompression (CDC) surgery attenuates brain injury and reduces the rate of complications after TBI. Here, we investigated the potential molecular mechanisms of CDC in experimental models. The in vitro experiments were performed in a traumatic neuronal injury (TNI) model following compression treatment in primary cultured cortical neurons. We found that compression aggravates TNI-induced neuronal injury, which was significantly attenuated by CDC for 2 h or 3 h. The results of immunocytochemistry showed that CDC reduced neuronal necroptosis and activation of RIP3 induced by TNI and compression, with no effect on RIP1 activity. These protective effects were associated with decreased levels of inflammatory cytokines and preserved intracellular Ca2+ homeostasis. In addition, the expression of the two-pore domain K+ channel TREK-1 and its activity was increased by compression and prolonged by CDC. Treatment with the TREK-1 blockers, spadin or SID1900, could partially prevent the effects of CDC on intracellular Ca2+ metabolism, necroptosis, and neuronal injury following TNI and compression. Using a traumatic intracranial hypertension model in rats, we found that CDC for 20 min or 30 min was effective in alleviating brain edema and locomotor impairment in vivo. CDC significantly inhibited neuronal necroptosis and neuroinflammation and increased TREK-1 activation, and the CDC-induced protection in vivo was attenuated by spadin and SID1900. In summary, CDC is effective in alleviating compressive neuronal injury both in vitro and in vivo, which is associated with the TREK-1-mediated attenuation of intracellular Ca2+ overload, neuronal necroptosis, and neuroinflammation.


Assuntos
Edema Encefálico/terapia , Lesões Encefálicas Traumáticas/complicações , Hemorragia Cerebral/terapia , Descompressão/métodos , Necroptose , Doenças Neuroinflamatórias/terapia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Edema Encefálico/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
14.
Neurochem Int ; 150: 105191, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34547325

RESUMO

Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.


Assuntos
Adenosil-Homocisteinase/biossíntese , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Neuroproteção/fisiologia , Receptor de Glutamato Metabotrópico 5/biossíntese , Traumatismo por Reperfusão/metabolismo , Isquemia do Cordão Espinal/metabolismo , Animais , Benzamidas/farmacologia , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Neuroproteção/efeitos dos fármacos , Paxilina/farmacologia , Pirazóis/farmacologia , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Traumatismo por Reperfusão/prevenção & controle , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Isquemia do Cordão Espinal/prevenção & controle
15.
Curr Med Sci ; 41(3): 610-617, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34047944

RESUMO

Traumatic brain injury (TBI) is a common injury caused by external forces that lead to damaged brain function or pathological changes in the brain tissue. To explore the molecular mechanism and the hub genes of TBI, we downloaded gene expression profiles of the TBI model of rat and the sham control for the subsequent gene set enrichment analysis, pathway analysis and protein-protein interactions analysis. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that multiple biological pathways, including immune response, inflammatory response and cellular response to interleukin-1, as well as signaling pathways, such as tumor necrosis factor signaling pathway, chemokine signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway and nuclear factor kappa B signaling pathway were implicated in the TBI. In conclusion, this study provides insights into the molecular mechanism of TBI by screening the differentially expressed genes and hub genes that can be used as biomarkers and therapeutic targets.


Assuntos
Lesões Encefálicas Traumáticas/genética , Regulação da Expressão Gênica/genética , Interleucina-1/genética , Fator de Necrose Tumoral alfa/genética , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/patologia , Biologia Computacional , Modelos Animais de Doenças , Redes Reguladoras de Genes/genética , Humanos , Mapas de Interação de Proteínas/genética , Ratos , Transdução de Sinais/genética , Receptores Toll-Like/genética
16.
Brain Res Bull ; 173: 132-140, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34023434

RESUMO

The degree of early brain injury (EBI) is a significant factor that affects the prognosis of patients with subarachnoid hemorrhage (SAH). Evidence has shown that fibroblast growth factor-2 (FGF-2) may alleviate the serious consequences of EBI after SAH. The objective of the current study was to investigate the underlying mechanism that mediates the neuroprotective effects of FGF-2 in the SAH rat model. Sprague-Dawley (SD) rats that underwent different treatments were divided into various groups. FGF-2 was administered intranasally to rats in the treatment group within 30 min after modeling. Rapamycin (an autophagy activator) or LY294002 (a PI3K/Akt pathway inhibitor) was administered intracerebroventricularly (i.c.v.) 30 min before modeling. Neurological scale and brain water content were measured in the brain tissue of the rats. TUNEL staining, Western blot, and immunofluorescence staining were performed to examine and compare the diverse effects of FGF-2 treatment, activated autophagy, and inhibited the PI3K/Akt pathway. We found that FGF-2 treatment effectively reduced the number of TUNEL-positive cells, decreased the brain water content, and improved the neurological function of rats after SAH. Additionally, the expression levels of autophagy-related proteins (LC3 and Beclin-1) were obviously decreased in the FGF-2 treatment group compared with the SAH + vehicle group. The therapeutic effects of FGF-2 in the SAH + FGF-2+rapamycin group were weakened compared with that in the SAH + FGF-2+DMSO group. In the event of the PI3K/Akt pathway inhibition, the expression levels of LC3 and Beclin-1 were enhanced, and the therapeutic effects of FGF-2 were compromised. In summary, our data collectively demonstrated that FGF-2 may suppress autophagy levels to play a neuroprotective role, at least partially by activating the PI3K/Akt pathway. These results highlight FGF-2 as a promising solution to the clinical intervention of SAH.


Assuntos
Autofagia/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Hemorragia Subaracnóidea/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley
17.
CNS Neurosci Ther ; 27(1): 134-144, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33421349

RESUMO

INTRODUCTION: Perampanel is a highly selective and noncompetitive α-amino-3 -hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, which has been used as an orally administered antiepileptic drug in more than 55 countries. Recently, perampanel was shown to exert neuroprotective effects in hemorrhagic and ischemic stroke models via regulating blood-brain barrier (BBB) function. AIM: Here, the protective effects of perampanel were investigated in an in vitro neurovascular unit (NVU) system established using a triple cell co-culture model (neurons, astrocytes, and brain microvascular endothelial cells) and in an in vivo traumatic brain injury (TBI) model. RESULTS: Neurons in the NVU system exhibit a more mature morphological phenotype compared with neurons cultured alone, and the co-culture system mimicked an impermeable barrier in vitro. Perampanel protects the NVU system against traumatic and excitotoxic injury, as evidenced by reduced lactate dehydrogenase (LDH) release and apoptotic rate. Treatment with perampanel attenuated lipid peroxidation and expression of inflammatory cytokines. In addition, perampanel increased Sirt3 protein expression, enhanced the activities of mitochondrial enzyme IDH2 and SOD2, and preserved BBB function in vitro. Knockdown of Sirt3 using specific siRNA (Si-Sirt3) partially reserved the effects of perampanel on neuronal injury and BBB function. Treatment with perampanel in vivo attenuated brain edema, preserved neurological function, inhibited apoptosis and microglia activation after TBI. Furthermore, perampanel increased the expression of Sirt3 and preserved BBB function after TBI. The effect of perampanel on BBB function and brain edema was abolished by knockdown of Sirt3 in vivo. CONCLUSION: Our results indicate that the noncompetitive AMPAR antagonist perampanel protects the NVU system and reduces brain damage after TBI via activating the Sirt3 cascades.


Assuntos
Barreira Hematoencefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Acoplamento Neurovascular/fisiologia , Nitrilas/farmacologia , Piridonas/farmacologia , Receptores de AMPA/antagonistas & inibidores , Sirtuínas/metabolismo , Animais , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Técnicas de Cocultura , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Masculino , Fármacos Neuroprotetores/uso terapêutico , Acoplamento Neurovascular/efeitos dos fármacos , Nitrilas/uso terapêutico , Gravidez , Piridonas/uso terapêutico , Ratos , Ratos Sprague-Dawley
18.
Aging (Albany NY) ; 13(2): 3101-3111, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479186

RESUMO

Subarachnoid hemorrhage (SAH) is a life-threatening cerebrovascular disease, and most of the SAH patients experience sleep deprivation during their hospital stay. It is well-known that sleep deprivation is one of the key components of developing several neurological disorders, but its effect on brain damage after SAH has not been determined. Therefore, this study was designed to evaluate the effect of sleep deprivation using an experimental SAH model in rats. Induction of sleep deprivation for 24 h aggravated the SAH-induced brain damage, as evidenced by brain edema, neuronal apoptosis and activation of caspase-3. Sleep deprivation also worsened the neurological impairment and cognitive deficits after SAH. The results of immunostaining and western blot showed that sleep deprivation increased the activation of microglial cells. In addition, sleep deprivation differently regulated the expression of anti-inflammatory and pro-inflammatory cytokines. The results of immunofluorescence staining and western blot showed that sleep deprivation markedly increased the activation of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein 88 (MyD88). Mechanically, treatment with the TLR4 inhibitor TAK-242 or the MyD88 inhibitor ST2825 significantly attenuated the brain damage and neuroinflammation induced by sleep deprivation after SAH. In conclusion, our results indicate that sleep deprivation aggravates brain damage and neurological dysfunction following experimental SAH in rats. These effects were mediated by the activation of the TLR4-MyD88 cascades and regulation of neuroinflammation.


Assuntos
Encéfalo/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais/fisiologia , Privação do Sono/complicações , Hemorragia Subaracnóidea/complicações , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Privação do Sono/metabolismo , Privação do Sono/patologia , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia
19.
J Craniofac Surg ; 32(1): e102-e103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32675762

RESUMO

ABSTRACT: Epidermoid cysts are rare benign tumors that account for 0.3% to 1.8% of all intracranial space-occupying lesions. They are usually congenital in origin and are thought to derived from ectodermal cell inclusions occurring during closure of the neural tube around third to fifth week of gestation. They are most commonly located in the cerebellopontine angle and the parasellar area, and their location in the diploic space is very rare. In this article, a case of giant epidermoid cyst located in the orbital roof intradiploic space is presented with clinical, radiologic features and surgical treatment.


Assuntos
Cisto Epidérmico , Ângulo Cerebelopontino , Cisto Epidérmico/diagnóstico por imagem , Cisto Epidérmico/cirurgia , Humanos , Órbita/diagnóstico por imagem , Órbita/cirurgia
20.
CNS Neurol Disord Drug Targets ; 20(3): 266-272, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33001018

RESUMO

BACKGROUND: Perampanel is a highly selective and non-competitive α-amino-3-hydroxy- 5 -methyl-4-isoxazole propionate (AMPA) receptor (AMPAR) antagonist, which has been licensed as an orally administered antiepileptic drug in more than 55 countries. Recently, perampanel was found to exert neuroprotective effects in hemorrhagic and ischemic stroke models. OBJECTIVE: In this study, the protective effect of perampanel was investigated. METHODS: The protective effect of perampanel was investigated in an in vitro Traumatic Neuronal Injury (TNI) model in primary cultured cortical neurons. RESULTS: We found that perampanel significantly preserved morphological changes, attenuated lactate dehydrogenase (LDH) release and inhibited caspase-3 activation after TNI. The TNI-induced necroptosis, as evidenced by flow cytometry, was markedly reduced by perampanel treatment. The results of western blot showed that perampanel decreased the expression and phosphorylation of the necroptotic factors, receptor protein interacting kinase 1 (RIPK1) and RIPK3. In addition, treatment with perampanel increased the phosphorylation of Akt and GSK3ß in a time-dependent manner up to 24 h after TNI. Treatment with the Akt inhibitor LY294002 partially reversed the protective effects of perampanel. CONCLUSION: Our present data suggest that necroptosis plays a key role in the pathogenesis of neuronal death after TNI, and that perampanel might have therapeutic potential for patients with Traumatic Brain Injury (TBI).


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Necroptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Nitrilas/farmacologia , Piridonas/farmacologia , Receptores de AMPA/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Neurônios/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...